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Many methods for the statistical design and analysis of integrated circuits have been pro-

posed over the past years. However, these methods typically require a large number of com-

putationally expensive circuit simulator runs, and their applications are limited to small cir-

cuits.

This research investigated new approaches for the statistical design and analysis of MOS

integrated circuits. This work has resulted in a new and efficient circuit performance model-

ing approach to statistical design. The proposed approach approximates the circuit perfor-

mances, such as gain and delay, by fitted models of the inputs to the circuit simulator. The

computationally inexpensive fitted models are then used as surrogates of the circuit simulator

to predict and optimize the parametric yield and to achieve off-line quality control. The use

of statistical design and analysis of experiments for model construction have been investigated

theoretically and experimentally, and different methods to assess the adequacy of a fitted per-

formance model have been studied.
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CHAPTER 1.

INTRODUCTION

During the past decade, the feature sizes of the Metal Oxide Semiconductor (MOS)

transistors in Very Large Scale Integrated (VLSI) circuits have been scaled down rapidly, and

this trend is expected to continue into the 1990's. Despite the technological progress in pat-

terning the features of the MOS transistors, the statistical variations in the MOSFET parame-

ters, such as the channel threshold voltage and gate oxide thickness, have not been scaled

down in proportion. As a result, the circuit performances become even more sensitive to

these uncontrollable statistical variations. To ensure the manufacturability of a circuit, statisti-

cal variabilities must be considered in the design procedure.

A problem in the statistical design of MOS integrated circuits is the modeling of the

device parameter distribution. Traditionally, circuit simulations at the "best-" and "worst-

case" process files have been used to evaluate the "range" of the circuit performance

variations. Best- and worst-case circuit simulations do not estimate the distributions of the

circuit performances, however. In Chapter 2 we review the best- and worst-case approach,

and present an improved model of the MOSFET parameters [1]. The proposed model

assumes the statistical variations in the circuit performances are mainly due to a small subset

of critical parameters. It models the non-critical device parameters as functions of the critical

parameters. This model of the MOSFET parameters [1], incorporated into our circuit design

algorithms, significantly reduces the complexity of the statistical analysis.
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The critical bottleneck in statistical circuit design is the high cost of the circuit simula-

tions. Existing design methods typically require a large number of runs. in this thesis we

present a new design approach which significantly reduces the -imulation cost. Our approach

assumes that the circuit performances, such as gain or delay, can be approximated by

computationally-inexpensive functions of the inputs to the circuit simulator. These inputs are

the designable circuit parameters, the operating conditions, and the distribution of the device

parameters. We fit the functions to data collected from a statistically desi- ned experiment in-

curring relatively few runs of the circuit simulator. These fitted models act as computational-

ly inexpensive surrogates of the circuit simulator for performance prediction. The applications

of our design approach to parametric yield prediction, yield optimization, and off-line quality

control are presented -_ Chapters 3, 4, and 5, respectively.

Circuit designers often measure a circuit's quality by parametric yield, which is the

percentage of the functionally good chips that satisfy the constraints. Parametric yield

prediction is important because it assesses the profitability of a design, before a large amount

of resources is invested in the manufacturing. In Chapter 3 we examine the existing yield

prediction methods and some related research in statistics and then present our improved yield

prediction algorithm [2, 3]. (Unless stated otherwise, the term yield refers to the parametric

yield in the rest of the thesis. Other causes of yield loss are explained in [4]). The yield

prediction methods in [1,5] model each performance by an approximating function of the

uncontrollable statistical variations, and then the Monte Carlo method is used with the fitted

models to predict yield. However, the data are collected by empirical methods in [1,5], and

no attempt has been made to assess the prediction capabilities of the fitted models. In the

proposed method, we fit the performance models to data generated according to a statistically
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designed experiment, and introduce systematic procedures to assess the prediction capabilities

of the fitted models. Monte Carlo simulation with the fitted models leads to an estimate of

the parametric yield. We illustrate through circuit examples the experimental design and

model assessment procedures.

Parametric yield optimization is an extension of yield prediction. For a known distribu-

tion of the input device parameters, the problem is to maximize the parametric yield with

respect to tale designable circuit parameters, such as the MOSFET channel widths and aspect

ratios. Gradient methods for yield maximization [6] compute yield gradients with respect to

the designable circuit parameters, and then use steepest ascent to optimize the parametric

yield. Data from many runs of the circuit simulator are needed to compute a single yield gra-

dient, and many gradient iterations are required. As a result, yield gradient methods typically

require a very large number of runs, and their applications are limited to small circuits.

In Chapter 4 we extend the method in Chapter 3 to parametric yield optimization [7,8].

We model each circuit performance as a function of all parameters of interest: the designable

circuit parameters, the statistical variations, and the operating conditions. Data generated

according to a single experimental design for all parameters are used to identify and fit the

model. For fixed values of the designable parameters, the Monte Carlo yield is estimated with

the fitted models. The estimated yield is numerically optimized. We give circuit examples

where sufficiently accurate yield estimates and good actual circuit designs can be achieved

with about 100 circuit simulator runs.

Taguchi's parameter design method for off-line quality control [9] has generated great

interest in the engineering and statistics literature. Instead of maximizing the parametric

yield, Taguchi [91 uses statistical design and analysis of experiments to design prodvicts
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(circuits) that are insensitive to variatiois in the manufacturing process and/or the environ-

mental conditions. Like the yield gradient methods, Taguchi's design method typically

requires many (circuit simulatr) runs, Data from many runs are collapsed to estimate a sin-

gle "signal-to-noise ratios-" just as the yield gradient methods cuiiapse data when calculating

the gradients.

In Chapter 6 we adapt our performance modeling method to the off-line quality control

problem. Again, we approximate the circuit performances by functions of all the inputs to the

circuit simulator, collect data from a statistically des: ned experiment, and fit the performance

models. For a fixed set of designable parameters, the fitted models are used to predict the

Taguchi loss statistic, rather than parametric yield. The loss statistic is numerically optimized

with respect to the designable parameters. We give a circuit example in which the Taguchi

objectives are met with about one-third of the runs. Finally, in Chapter 7 we provide some

conclusions along with some suggestions for future research.
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3 CHAPTER 2.

STATISTICAL MODELING OF THE MOS TRANSISTOR

I

A major goal of statistical circuit design is to predict, from a known distribution of the

3N inputs to the circuit simulator, the distribution of the output circuit performances. In MOS in-

tegrated circuits these statistical inputs are the device parameters, such as threshold voltage

and oxide capacitance. Typically, empirical distributions of the device parameters are ob-

3 tained by test structure measurements and parameter extraction. Statistical circuit analysis by

direct Monte Carlo circuit simulator runs is computationally too expensive, however. To

analyze a circuit with a small number of runs, the distribution of the device parameters should

3 be sampled effectively.

3 The traditional best- and worst-case analyses approach [10] to statistical circuit design

estimates the "range" of the performances by circuit simulations at the "best-" and "worst-

3 case" files. Best- and worst-case analyses do not estimate the performance distribution, how-

3 ever. In this chapter, we present a new statistical model to represent the distribution of the

device parameters [11]. The model in [11] assumes that inter-die variations in the circuit

performances are due to a small subset of critical parameters, and models the parameter corre-

3 lations by fitted quasi-physical equations. This screening and modeling of MOSFET parame-

ters [11] significantly reduce the problem dimension. Section 2.1 outlines the best- and

worst-case analysis method. The statistical model of the device parameters is described in

3 Section 2.2. A discussion in Section 2.3 concludes this chapter.
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2.1. Best- and Worst-cpse Analyses

The best- and worst-case analyses approach is the tiaditional method for statistical circuit

analysis. It estimates the "range" of the performances from a small number of circuit

simulations (usually three to five runs). We denote the device parameters, such as threshold

voltage and oxide capacitance, by P = (pt..... pq). The commonly used methods to obtain the

best- and worst-case files are

(a) One-at-a-time method: Each pi that leads to a better or worse performance is chosen

independently. Typically, the chosen value is the mean of pi ± 2 or 3 standard deviation.

This method gives very conservative best- and worst-case performances, because the

probability of a MOSFET falling outside the rectangular region bounded by the best- and

worst-case pi's is extremely small.

(b) Fast and slow MOSFETs: Select "fast" and "slow" transistors from the test structures,

and extract their parameters for circuit simulation. For digital circuits, the fast and slow

MOSFETs are expected to give the best and worst performances. This method gives less

conservative best- and worst-case estimates than the first approach because it incorporates

-the correlations between the pi's. The choice of the MOSFET samples remains a

problem, however.

(c) Principal component approach [12]: Transform the correlated parameters Pl.... Pq into

independent variables 1, ... , q by principal components, and then select the i,

i = 1,...,q for the circuit simulation. The problem of MOSFET parameter correlations is

eliminated by the transformation.

6
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(d) Independent process parameters (10]: Select the combinations of the manufacturing pro-

czss parameters that lead to the best- and worst-case performances, and generate the

MOSFET parameters from a process/device simulator, such as FABRICS [131. Working

on the independent process parameters avoids the analysis of the MOSFET parameters.

Best- and worst-case circuit simulations do not provide the circuit performance distribu-

tions. Moreover, there exist no formal methods to validate the choice of the best and worst-

case files. Clearly, an improved representation of the device parameter distribution is needed.

2.2. Critical MOSFET Parameters

Yang and Chatterjee [111 observed that a small number of critical MOSFET parameters

can account for most of the variability in the circuit behavior. Four critical MOSFET parame-

ters were identified as [11]

" transistor channel width reduction (AW),

" transistor channel length reduction (AL),

" gate oxide thickness (t,,), and

" flatband voltage (Vfb).

These critical parameters take independent Gaussian distributions. It has been shown [14]

that currents and capacitances of MOS transistors are sensitive to the four critical parameters.

Moreover, the sensitivities to the other device parameters are calculated to be at least an order

of magnitude smaller [1].
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The non-critical device parameters in P, such as

" drain and source resistances,

" body effect coefficient, and

* channel length modulation,

are approximated by quasi-physical equations of the critical parameters. We called the set of

quasi-physical equations a statistical MOSFET model. From device physics and the charge

sharing concept [15], it is recognized that most device parameters have an inverse

dependency on the transistor channel widths and lengths. Thus, the model

Pwi PLi
W-AW L-AL' (2.1)

where W and L are the transistor channel width and length, poi is the nominal value of pi,

and pwi and pti represent the W and L dependencies. The exceptions to Eq. (2.1) are the

transistor gain [1]:

Cox (W - AW)

(L - AL)' (2.2)

where p. is the mobility and Co, is the gate oxide capacitance; and the mobility degradation

=0 (W-AW) + eL Oe_(2.3)
00+ (L-AL) (L-AL) ' (W-AW)(L-AL) (2.3)

where 00 is the mobility reduction due to the vertical electrical field in the channel and sur-

face scattering, and 0,, 0L , and 0 , are the W and L dependency coefficients. Measured
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I

data of the device parameters are fitted to the quasi-physical equations. The variability in a

parameter that is not explained by the model will be ignored [11].

Liu and Singhal [16] suggested an alternative representation of the MOSFET parameters.

They derived seven critical process parameters, Z = (z I, . z7), from line-monitoring meas-

urements

* offset in diffused line width (Dw),

* offset in poly width (DL),

9 oxide thickness (to),

* flatband voltage (Vf.b) ,

e substrate doping concentration (NsuB),

* surface mobility (gt), and

* lateral junction depth (Dj).

The variation of each zi is taken as a Gaussian distribution. The proposed statistical model

is [16]

p =f (z 1, z 7) + gi (LEFF) + [aij zj + + Ei . (2.4)
j=t ziLj

The model consists of four components:

9



(a) A function fi(zl 7z7 ) that relates a device parameter to its geometries and the

manufacturing process.

(b) A nonlinear function gi (LEFF) of the effective channel length LEFF,

(c) An expression Y, aijzj + with unknown constants aij and bij, from multi-j=t Zi L

parameter linear regression [17].

(d) A random error Ei that models the statistical variation of pi that is not explained by the

first three components in Eq. (2.4). In the implementation, ci is generated by a Gaussian

random number generator.

2.3. Discussion

The quasi-physical statistical MOSFET model in [1] is used in our yield prediction and

optimization examples. Little justification has been introduced to support the more complex

model in [16].

To restrict the number of independent statistical variables, the parameter variations within

a die are neglected in [1] and [16). Intra-die variations can be important in high performance

analog circuits that require closely matched devices. The statistical analysis of circuits with

parameter mismatches is considered in [18].

More investigation is needed to evaluate the validity of the statistical MOSFET models.

The critical parameters in [1, 16] are selected subjectively, and rigorous methods have not

been used. A survey of screening methods and some examples are given in [19]. The step-

wise regression and rank regression methods in [20,21] may be useful.

10



CHAPTER 3.

PARAMETRIC YIELD PREDICTION

Parametric yield prediction has become an increasingly important problem in the design

of MOS integrated circuits. In the last decade, VLSI device feature sizes have decreased

dramatically. However, the statistical variations of the device parameters have not been

scaled down in proportion. As a result, the circuit performances become even more sensitive

to statistical variations, which may lead to low parametric yield. To ensure acceptable yield,

these statistical variations must be considered in the circuit design procedure.

A major bottleneck in parametric yield prediction is the high cost of the circuit simula-

tion. The classical Monte Carlo method [22] is very expensive because it predicts the yield

from a large number of circuit simulator runs. To reduce the simulation cost, a statistical

modeling method is introduced in [1]. This approach approximates the circuit performances,

such as gain and propagation delay time, by fitted models of four critical MOSFET parame-

ters. These fitted models, estimated from five circuit simulations, act as computationally inex-

pensive surrogates of the circuit simulator in the Monte Carlo simdlation. The study in [1]

found many examples in which this performance modeling approach predicts yields fairly ac-

curately. However, many important aspects in statistical modeling, such as model assessment

and selection of the inputs to run the circuit simulator, have not been considered [1].

In this chapter we present an improved circuit performance modeling method for

parametric yield prediction. As in [1], our method assumes that the circuit performances can

be approximated by fitted models of a small subset of critical parameters, and perform Monte

11



Carlo simulation with these fitted models to predict yield. Unlike [1), the data in our method

are collected according to a statistically designed experiment, which ensures all the relevant

statistical information are gathered from a small number of circuit simulator runs. Further-

more, we assess the prediction capability of each fitted model before it is used to predict

yield. Section 3.1 reviews the Monte Carlo and the statistical performance modeling methods.

Section 3.2 summarizes the related research in statistics. Section 3.3 outlines our strategy.

Section 3.4 illustrates our method with circuit examples. The discussion in Section 3.5 con-

cludes this chapter.

3.1. Previous Parametric Yield Prediction Methods

The parametric yield of a MOS VLSI circuit depends on a large number of factors: the

designable parameters, the operating conditions, the distribution of the device parameters, and

the specified performance criteria. The designable parameters, such as the drawn transistor

channel widths and lengths, are fixed in parametric yield prediction. (The case in which

parametric yield is optimized with respect to the designable parameters is considered in

Chapter 4.) The empirical distribution of the device parameters, such as channel threshold

voltage and body effect coefficient, are usually obtained from test structure measurements.

We denote the circuit performances, such as gain or propagation delay time, by

Y = (Y .. Yd). The device parameters are denoted by P = ( p 1 ..... pq). To simplify nota-

tion we do not introduce separate symbols for the operating conditions, but they are used later

in Chapter 4.

12



Given a set of constraints on the performances, let I ( Y1. Yd) = 1 if all the con-

3 straints are met, and 0 otherwise. The parametric yield is the percentage of the manufactured

circuits with I = 1:

=D j I[ YI(P) ..... Yd(P)] d@(P) * 100%, (3.1)

where 8 is the distribution of P.

U Existing methods for yield prediction usually can be classified into Monte Carlo

3 methods [18,22,23] or statistical modeling methods [1,5].

3 3.1.1. Moate Carlo methods

3 Monte Carlo circuit simulation, or simple random sampling, is probably the most widely

used method for parametric yield prediction [18,22]:

STEP 1: Generate a (large) number of samples of the device parameters Pi, i = 1... NMC

from e.

STEP 2: Simulate the circuit performance Y(Pi), for i = 1..., NMC.

STEP 3: Calculate the predicted yield as the percentage of samples that are acceptable:

I 1 NUC=;- I I (YPi)) * 100%. (3.2)
MC i=1

The confidence limits on 4' are estimated from [23]:

Prob( - y < u ($))= 2F( N)-1, (3.3)

where

13



=' 
(3.4)

is the variance of the yield estimate, and F ( iy ) is the cumulative standard Gaussian distribu-

tion. Note the accuracy of $ is inversely proportional to the square root of the sample size

NMC.

The advantages of simple Monte Carlo circuit simulation are

(i) It states the confidence limits on the predicted yield, 4).

(ii) The sample size NMC is independent of the number of input parameters. As a result, all

the device parameters can be varied in the circuit simulation, at no extra cost.

(iii) It makes no restrictive assumption on the distribution of the device parameters, e(P).

(iv) It makes no restrictive assumption on the relations between the inputs and outputs of the

circuit simulator.

Due to the high cost of circuit simulation, the Monte Carlo method is too expensive for larger

circuits. Another disadvantage of Monte Carlo analysis is that it does not give a physical

relationship between the device parameters and yield. Nonetheless, we will treat the yield

estimated from Monte Carlo circuit simulation as the "actual" yield to assess the relative accu-

racy of the other approaches.

Hocevar et al. [23] studied variance reduction methods to reduce the sample size. The

strategies considered are correlated sampling, importance sampling, control variates, and

stratified sampling. No practical and general reduction technique has been found [23].

14



3.1.2. Statistical performance modeling method

Cox, Yang, Manhant-Shetti, and Chatterjee [1] proposed a statistical performance model-

ing approach. Although the number of device parameters is large, it has been shown in Sec-

tion 2.2 that only a small subset is critical. The uncontrollable inter-chip variations in the

critical parameters are assumed to be independent random variables. For convenience they

are taken as Gaussian. Device parameter variations within a chip are assumed to be negligi-

ble.

We denote the four critical parameters in [1] by U = (u .. u4). The method involves

four steps [1]:

STEP 1: Select five points U1,...,U 5 and simulate the circuits at these points. The device

parameters P are treated as functions of the four critical parameters (see Sec-

tion 2.2).

STEP 2: Assume models

4

Yk = Pok + PI ikUi + error, k 1...d, (3.5)
i=1

where k,...,04k are the unknown constants. Fit the data to model (3.5) to obtain

the approximation Yk (U).

STEP 3: The yield body A is a region defined by the fitted models, U e A if Y'(U) satisfies

the constraints. The parametric yield is computed by numerical integration

= dr(U)* 100%, (3.6)
Ue A
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where F(P) is the distribution of P.

STEP 4: For a more accurate estimate of ), perform extra simulations at points close to the

boundary of A, and repeat steps 2 and 3.

Visvanathan [5] also advocated the performance modeling approach for statistical circuit

analysis, and implemented his method in the CENTER/ADVICE program. The inputs to the

circuit simulator are denoted by . These j's are the operating conditions and the

critical process parameters in [161. The assumed models are [5]

m m

Yk = 00k + _,iki + Pjiki?,  k = 1...d, (3.7)
i=1 i=1

where Pok, OiA, etc. are unknown constants. The models are fitted to data from 2m+l circuit

simulator runs: one run at the nominal values of ,.... ,, and 2m runs where each 4i is

varied to its "extreme" values.

The circuit performance modeling method [1,5] is attractive because it requires only a

small number of circuit simulator runs, and the fitted models estimate the sensitivity

coefficients Z)yk/"U i . However, these aspects in statistical modeling are not considered

in [1,5]:

(a) The statistical design of experiments have not been used to select the inputs to run the

circuit simulator (see Appendix A).

(b) The models are fitted from the minimum number of runs, and no attempt is made to

assess their goodness of fit (see Appendix B).
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(c) The effects of representing the device parameters as functions of four critical MOSFET

parameters are not known.

3.2. Uncertainty Analysis

In statistics, the analysis of the responses (outputs) of -. ccmputer code when the inputs

are subjected to statistical variations is called uncertainay analysis [191, or sensitivity

analysis [20,211. Parametric yield prediction can be considered as an uncertainty analysis

problem. The circuit performance models in [1) are commonly known as response surface

models [241. The equivalent terminologies in VLSI design and statistics are listed in Table

3.1.

Iman, Helton, and Campbell [20,21] considered the sensitivity analysis of a computer

code known as the "pathways-to-man" model. Like parametric yield prediction, their goal is

to predict from a known distribution of the inputs, the distribution of the responses from the

computer code. They suggested the followin, ana!ysis procedure: (i) Identify a (small) sub-

set of critical inputs by Latin hypercube sampling [25]. (ii) Construct response surface

models of the outputs by the stepwise regression and rank regression methods [17]. (iii) Gen-

erate the distribution of the responses by Monte Carlo simulation with the fitted (response sur-

face) models.

Downing, Gardner, and Hoffman [19] also examined the response surface approach for

the uncertainty analysis of computer codes. Their analysis method is similar to the one

in [20]: (i) The critical inputs are identified by a fractional factorial experiment [26] that

varies all the input parameters. (ii) Each response of interest is approximated by i unction of
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Table 3.1 Equivalent terminology in yield prediction and the
response surface method.

VLSI Design Statistics

1. circuit simulation computer experiment

2. circuit simulation plan design of experiment

3. circuit performance response, output variable

4. inputs to the circuit simula- predictors, input variables,
tor experimental factors

5. designable parameters controllable factors

6. device parameters noise factors, uncontrollable
parameters, statistical varia-
tons

7. macro-model, statistical per- empirical model, regression
formance model model, response surface

model
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I

the critical inputs, while the non-critical inputs to the simulation code are fixed at their

nominal values. Typically the approximating function is a second-order polynomial. (iii)

The approximating function is fitted to data collected according to a central composite

design [26]. The goodness of fit of a function to data is assessed by the R 2-statistic (see

Appendix B). The study in [19] showed that the response surface approach predicts the

distributions of the responses fairly accurately in certain examples. However, it is emphasized

that response surfaces should be used with caution, because it is difficult to evaluate the

effects of dropping the non-critical inputs.

3.3. Proposed Parametric Yield Prediction Method

The proposed method combines the device parameter modeling method [1] and the

response surface method [24]. The statistical MOSFET models (device parameter

equations) [1] allow us to reduce the dimension of the problem without compromising the

accuracy of the yield prediction. We prefer the systematic response surface method over the

empirical curve-fitting strategy in [1].

Denote the critical parameters by U and the circuit performances by Yk, k = 1,...,d. The

broad strategy of our yield prediction algorithm involves four steps:

STEP 1: Assume model

yIt =fk (U)+ error, k= ,...,d, (3.8)

for each circuit performance of interest, Yk.
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STEP 2: Design an experiment and simulate the circuits at the experimental design points.

The non-critical device parameters are treated as functions of the critical inputs.

STEP 3: Fit the models (3.8) to obtain the approximation Yk (U), and improve the model if

necessary.

STEP 4: The parametric yield is estimated by Monte Carlo simulation. First generate a

(large) sample, Uj, i = 1..., NUc, from the distribution of U. Then compute

k(Ui), i = 1,.... Mc; k = 1,...,d. (3.9)

The estimated parametric yield is the percentage of samples that are acceptable:

1 (y(U) ...-, Yd(Ui)) * 100%. (3.10)
NMC i=1

Detailed implementation of our experimental design and model assessment pro-

cedures is given in the circuit examples.

3.4. Yield Prediction Examples

Our method for statistical performance modeling and parametric yield prediction is illus-

trated through the following examples.

Example 1. NMOS chain of Inverters

We consider a chain of 20 NMOS inverters. The goals are to assess the adequacy of the

statistical MOSFET model with four critical parameters and to fit an accurate prediction

model of the performances. The modeled performances are
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Yi = the power dissipation [27],

y= the output delay time.

The critical parameters are

u I = channel width reduction (AW),

U2 = channel length reduction (AL),

U3 = gate oxide capacitance (C,),

U4 = channel flatband voltage (Vfb).

The factors u I,..., u4 are normalized to the range [-1,+1], and their distribution functions are

four independent Gaussian variables with mean zero, and a = 1/2. We denote the four-

dimensional experimental region [-1,1] 4 by R.

The assumed model is

4
Yk = 3ok + Pitui + error, k = 1,2, (3.11)

i--1

where 00k, Pik, are the unknown regression coefficients.

Denote the design points by Ui , i = 1,..., NOEs. At a design point Ui , the device param-

eter

Pij = gj(U ) + e, j = 1...q, (3.12)

where gj is a systematic function that approximates the dependency of a parameter on U, and

e is a Gaussian random number that models the variation not determined by U. We
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duced this random error into the experiment to assess the sufficiency of ul .... u4. In [1]

there is no residual random variation, and eij = 0.

The number of runs in the experiment is fairly arbitrary: a minimum of 5 runs is needed,

and 3 (replicated) runs are taken at the center of the design region R to assess potential lack

of fit. The ACED package [28] was used to obtain the design (see Section A.1). This package

can construct experiments according to various optimality criteria. The mean-squared error

criterion in ACED, which addresses both the sampling error and bias in prediction arising

from model inadequacy, is appropriate. The robust design criterion that chooses a

compromise between the sampling and bias error is used. The ACED generated experimental

design is listed in Table 3.2, along with the data.

Table 3.2 Experimental design and data of inverter chain (four critical parameters).

Run u I  U2  U3 U4  YI (mW) Y2 (ns)

1 -1 -1 -1 +1 1.62 24.1
2 -i +1 +1 +1 3.08 10.8
3 -1 +1 +1 -1 3.50 10.1
4 0 0 0 0 2.32 15.2
5 0 0 0 0 2.35 15.8
6 0 0 0 0 2.22 16.7
7 +1 -1 -1 -1 1.69 21.5
8 +1 -1 +1 +1 2.10 17.6
9 +1 +1 -1 +1 1.83 19.7
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We fit the data to model (3.11) with the RSREG procedure in SAS [29] and assess the

prediction capability of fitted model, Yi and Y2, by the F-test procedure in [301 (see

Section B.1). Tables 3.3 (a) and (b) list the regression statistics, along with the fitted equa-

tions. The F-statistics estimate the ratios between the variations "explained" by a model and

the error. They are used to test if

(a) the "range" of values predicted by a fitted model is substantially larger than the standard

error,

(b) the lack of fit is insignificant.

First, condition (a) is checked at a significance level a = 0.05, whether the variation

"explained" by 9 I is at least yt0 2 = 4 times larger than its standard error. In this case, the F-

statistic of the fitted model (F2 = 148.86) is substantially larger than the critical value of the

corresponding noncentral F-distribution (Fi,cr = FO.05;4,4.4 = 29.8). This suggests the fitted

linear equation of u .... u4 adequately accounts for the variations in y 1.

Next, we check condition (b) for the adequacy of Eq. (3.11). The lack of fit F-statistic

(F 2 = 1.5) is substantially smaller than the critical value of the corresponding F-distribution

(F2.cr = F 0 .05;2.2 = 19.0), suggesting the lack of fit is insignificant. We conclude the model is

adequate (case 1 in Section B.1). Following the same procedure, we also conclude that the

fitted delay equation is adequate.

The model predicted a maximum (worst-case) power of 3.5 mW in R, with a 95%

confidence limit of ±0.2 mW. At this point, the parametric yield can be estimated by Monte

Carlo simulation with the fitted models. This procedure is described in the next example.
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Table 3.3 (a) ANOVA table for the power of inverter chain (four critical parameters).

Source SS df MS F-ratio Test Statistic

Model 3.122 4 0.781 F 1 = 148.8 Fic, = 29.8
Error 0.021 4 0.005

Lack of Fit 0.0126 2 0.0065 F 2 = 1.125 F2,cr = 19.0
Pure Error 0.0083 2 0.0042

YI = 2.35 - 0.19u I + 0.29u2 + 0.43u 3 - 0.21u 4

Table 3.3 (b) ANOVA table for the delay of inverter chain (four critical parameters).

Source SS df MS F-ratio Test Statistic

Model 163.5 4 40.88 F 1 = 32.3 F ic, = 29.8
Error 5.06 4 1.265

Lack of Fit 3.912 2 1.956 F 2 = 3.412 F 2., = 19.0
Pure Error 1.147 2 0.573

92 = 16.6 + 0.3u 1 - 2.5u 2 - 3.6u 3 + 1.2u 4
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Example 2. Critical Path of 32-Bit Domino CMOS ALU

The second example is the critical path of a 32-bit domino CMOS ALU circuit shown in

Figure 3.1 [31]. The circuit performances of interest are:

Y1 = the power dissipation,

Y2 = the output delay time.

Table 3.4 shows the experimental design chosen by ACED, along with the data. The

assumed model is identical to (3.11). Tables 3.5 (a) and (b) show the regression statistics,

along with the fitted equations.

In the case of power dissipation, the F-test show that the range of values predicted by 9

is much larger than the error (F 1 = 36.1 > Fl,, = 29.8), and the lack of fit is insignificant

(F2 = 2.0 < F2.,, = 19.0). The test results suggest the model is adequate (case 1 in

Section B.1).

In the case of output delay time, the F-tests show that the range of values predicted by

I Y2 is not substantially larger than the standard error (F, = 20.9 < F = 29.8), and the lack

of fit is insignificant (F2 = 1.2 < F2,cr = 19.0). We conclude

3 'Te fitted linear equation ofu 1, u 2, u3, u4, is not an adequate predictor of the delay time.

I . The linear equation should approximate the actual delay adequately.

i . The error due to uncertainties in the fitted model is important.

2
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Figure 3.1 Critical path through a 32-bit Domino CMOS ALU.
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Table 3.4 Experimental design and data of ALU (four critical parameters).

Run u I  u2  u 3  U4  YI (MW) Y2 (ns)

1 -1 -1 -1 +1 6.12 80.7
2 -1 +1 +1 +1 7.32 51.0
3 -1 +1 +1 -1 5.67 40.8
4 0 0 0 0 6.04 62.5
5 0 0 0 0 6.20 65.1
6 0 0 0 0 5.75 55.6
7 +1 -1 -1 -1 5.12 80.8
8 +1 -1 +1 +1 9.16 96.2
9 +1 +1 -1 +1 6.25 61.2

Therefore, we conclude that either the number of observations NoBs is too small or that

the set of critical parameters used is incomplete (case 2 in Section B. 1).

It is observed that the domino CMOS circuit uses a long chain of NMOS transistors con-

nected in series; the effect of the back-gate bias on the output delay time should be

significant. However, the substrate doping NSUB, which strongly affects the body-effect

coefficient, is not included in the four-parameter model (3.11). Therefore, we include a fifth

critical MOSFET parameter

u5 = substrate doping (NsuB).

The assumed model is

5
Y2 = Pok + P ikui + error, k = 1,2, (3.13)
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Table 3.5 (a) ANOVA table for the power of ALU (four critical parameters).

Source SS df MS F-ratio Test Statistic

Model 11.02 4 2.76 F, = 36.1 F cr = 29.8
Error 0.305 4 0.08

Lack of Fit 0.202 2 0.101 F 2 = 2.0 F2., =19.0
Pure Error 0.103 2 0.051

9 = 6.19 + 0.46u 1 - 0.39u 2 + 1.06u 3 + 0.95u 4

Table 3.5 (b) ANOVA table for the delay of ALU (four critical parameters).

Source SS df MS F-ratio Test Statistic

Model 2243.0 4 560.8 F 1 = 20.9 Ficr = 29.8
Error 107.2 4 26.8

Lack of Fit 58.5 2 29.3 F 2 = 1.2 F 2 ,cr = 19.0
Pure Error 48.7 2 24.4

Y2 = 64.5 + 6.2u1 - 15.9u 2 + 1.6u 3 + 6.4u4
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Table 3.6 Experimental design and data of ALU (five critical parameters).

Run u1  u 2  u 3  U4  U5  Y1 (mW) Y 2 ((ns)

1 -1 -1 +1 -1 -1 5.76 61.0
2 -1 -1 +1 +1 +1 7.42 71.4
3 -1 +1 -1 -1 -1 4.76 46.9
4 -1 +1 -1 +1 +1 6.30 57.2
5 0 0 0 0 0 6.40 68.4
6 0 0 0 0 0 5.78 59.4
7 0 0 0 0 0 6.29 65.1
8 +1 -1 -1 -1 +1 5.27 90.6
9 +1 -1 -1 +1 -1 6.30 87.5

10 +1 +1 +1 -1 +1 5.97 52.0
11 +1 +1 +1 +1 -1 7.10 50.6

An experimental design for uI, . . . u 5 with NOBS = 11 runs is generated by ACED.

Table 3.6 shows the experimental design, along with the data. The fitted models and the

regression statistics are shown in Table 3.7.

In this case F1 = 46.7 is larger than Ficr" = F'0.05;5.5,4 = 23.2, and F 2 = 0.02 is smaller

than F2,cr = F0.05;3,3 = 19.0 for the delay, which indicates that the delay model is now ade-

quate with five parameters. It should be noted that the statistical variation of NSUB is technol-

ogy dependent and, for some technology, the variation of NSUB may be negligible.

The distribution of the output delay time, obtained from 10,000 Monte Carlo runs of the

fitted model, is shown in Figure 3.2. The number NMC = 10,000 is chosen simply to ensure a

sufficient number of samples. The computer time to evaluate 10,000 sample points with the

fitted models is very small compared with the time for the circuit simulation. An empirical

distribution of the delay, obtained from 300 runs of the circuit simulator with all the input
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Table 3.7 (a) ANOVA table for the power of ALU (five critical parameters)

Source SS df MS F-ratio Test Statistic

Model 5.44 5 1.09 F 1 = 23.8 Fi1c = 23.2
Error 0.23 5 0.05
Lack of Fit 0.012 3 0.004 F 2 = 0.04 F 2., = 19.2
Pure Error 0.217 2 0.109

Y2 = 6.12 +0.05u 1 --0.08u 2 +0.45u 3 +0.67u 4 +0.13u 5

Table 3.7 (b) ANOVA table for the power of ALU (five critical parameters).

Source SS df MS F-ratio Test Statistic

Model 1978.2 5 395.6 F1 = 46.7 Fi1cr 23.2
Error 42.4 5 8.9

Lack of Fit 1.1 3 0.4 F 2 = 0.02 F2,, = 19.2
Pure Error 41.3 2 20.7

2 = 64.5 +5.5u I - 13.0u 2 - 5.9u 3 + 2.0u 4 +3.2u 5
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Figure 3.2 ALU delay distribution from 10,000 runs of the fitted model.
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MOSFET parameters varying, is shown in Figure 3.3. The moments and percentage points of

the two distributions are listed in Table 3.8. We use the distribution from the 300 circuit

simulator runs as the "true" delay distribution because it is the best approximation that is

available.

The fitted model predicts the distribution of the delay accurately. The differences

between the means and standard deviations of the delay distributions are small (5%). How-

ever, the distribution from 10,000 runs with the model is symmetric and normal whereas the

distribution from 300 circuit simulator runs has a skewness of 0.8. These discrepancies can

be explained in part by the higher-order effects not modeled in (3.13) and declared

insignificant by the lack of fit test.

The differences between the 75, 90, 95 and 99 percentile points of the delay distributions

are consistently less than 10%, and there is a maximum error of +5.9% at the 99 percentile.

The parametric yields for various delay constraints are estimated from the performance

distributions. The yield difference between the regression model and circuit simulatr oased

simulation for delay constraints of 65 ns, 70 ns and 75 ns is consistently less than 12%.

Example 3. CMOS 4-Bit Full Adder

In thib example we consider a CMOS 4-bit full adder consisting of 112 transistors. The

modeled performance is

y = the output delay time of the most significant bit.

The five critical parameters u1 ...... u 5 are identical to those in Example 2. ACED is used to
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Figure 3.3 ALU delay distribution from 300 circuit simulator runs.
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Table 3.8 Delay distribution of ALU.

Monte Carlo with Monte Carlo with
Circuit Simulator Fitted Model

No. samples 300 10000
Mean 61.4 64.5
Std. Dev. 8.96 8.48
Variance 80.2 71.9
Skewness 0.81 0.0
Kurtosis 1.05 0.0
Median 60.3 64.5

75 percentile 66.3 70.2
90 percentile 73.1 75.4
95 percentile 77.6 78.5
99 percentile 90.0 84.8

'65:1 75% 64%
T7o 87% 83%
(D75 95% 94%

:D T. is the predicted parameteric yield when the

delay constraint is Tm. (ns).
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design a 16-run experiment of 5 factors. The delay distributions generated by 10,000 runs

with the f;tted model and 300 runs of the circuit simulator varying all the device parameters

are compared in Table 3.9. It can be observed that the errors in the worst-case delay estima-

tion are consistently less than 5% and the differences in yield estimates are less than 8%.

I
3.5. Concluding Remarks

In this chapter, an improved circuit performance modeling method for parametric yield

Uprediction is presented. It is shown that our method predicts yield accurately with a relatively

3 smaH number of circuit simulator runs.

[m We introduced the response surface method for the building of the circuit performance

models. Our method, based on the design and analysis of experiments, allows accurate

I models of the circuit performances to be fitted from a small number of circuit simulator runs.

I Experimental design also allows the assessment of the predictive capabilities of the fitted

models by a statistical F-test procedure.

IA systematic procedure is introduced to verify whether the four critical parameters

I indeed cause most of the variations in the circuit performances. Two statistical F-tests are

used to compare the variations due to the critical parameters with the variations due to other

sources. As demonstrated through the 32-bit ALU circuit example, the four critical parame-

I ters {AW, AL, Cx, Vfb ) may not be always sufficient. In this example engineering insight

has been used to identify the fifth critical parameter NSUB. This empirical method of parame-

ter screening may be avoided if the systematic screening methods were used (see Section 2.3).

I
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Table 3.9 Delay distribution of four-bit full adder.

Monte Carlo with Monte Carlo with
Circuit Simulator Fitted Model

No. samples 300 10000
Mean 78.3 81.3
Std. Dev. 13.3 14.9
Variance 176.3 220.6
Skewness 0.45 0.0
Kurtosis 0.0 0.0
Median 78.1 81.4

75 percentile 86.8 91.3
90 percentile 97.6 100.3
95 percentile 101.9 105.5
99 percentile 114.6 115.2

1?80 55% 47%
T9o 81% 73%
0100  93% 90%

(: T. is the predicted parameteric yield when the
the delay constraint is Tm~a (ns).
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Based on our experience with these and other examples, a linear equation often adequate-

ly approximates the performance of digital circuits. With a sufficient set of critical parameters

and careful modeling, the parametric yield and the distribution of the performances can be

predicted accurately.

In the rest of the thesis we will assume the critical parameters to be sufficient. The other

device parameters will be treated as deterministic functions of the critical parameters only.

This eliminates the sampling errors from the fitted models. The design of computer-

simulation experiments that has no random error is considered in Section A.2.
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CHAPTER 4.

PARAMETRIC YIELD OPTIMIZATION

In this chapter we extend the circuit performance modeling method to parametric yield

optimization. Like parametric prediction, the bottleneck in yield optimization is the cost of

the circuit simulation. Over the past years many approaches have been proposed for yield op-

timization, typically many circuit simulator runs are required, and their practical applications

are limited.

Yield gradient methods for parametric yield maximization [6,32,33] compute gradients

with respect to the designable circuit parameters and then use steepest ascent to optimize the

yield. Gradients only represent the local behavior of the yield function, however, and a possi-

bly poor local maximum may be found (unless the yield function is simple). Yield gradient

methods typically require a large number of circuit simulations. Data from many runs of the

circuit simulator are required to estimate a single yield gradient, and several gradient compu-

tations are needed in the optimization.

In our approach, we model each circuit performance as a function of all parameters of

interest: the designable parameters, the statistical variations, and the operating conditions.

Data generated according to a statistical experiment are used to identify and fit these models.

For fixed values of the designable parameters, the Monte Carlo yield is estimated with the ap-

proximating models acting as computationally cheap surrogates for the circuit simulator, as in

Chapter 3. This estimated yield is numerically optimized. Section 4.1 outlines the steps in
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our strategy, and Section 4.3 illustrates the detailed implementation in two CMOS analog cir-

cuit examples. Finally, Section 4.4 presents some concluding remarks.

4.1. Proposed Parametric Yield Maximization Method

The parametric yield of a MOS VLSI circuit depends on a large number of factors: the

designable parameters, the operating conditions, the distribution of the uncontrollable statisti-

cal variations, and the specified performance criteria. The designable circuit parameters, such

as the drawn transistor channel lengths and the aspect ratios of the P and N-channel transis-

tors, can be specified by the circuit designers. We model the distribution of the device param-

eters by a small subset of critical parameters, as in Chapter 3. The device parameters are

treated as functions of the critical parameters only, and there is no randomness in the experi-

ment.

We denote the circuit performances of interest, such as gain or propagation delay time,

by Y = (Y ,-.,Yd). Let X =x 1, . . . ,x.) denote the varying input parameters to the circuit

simulator, all other inputs remaining fixed. In circuit simulation, each xi can be manipulated

to represent controllable adjustment of a designable circuit parameter and/or uncontrollable

statistical variation. We write xi = ci + ui to differentiate between the controllable and

uncontrollable portions. If an input parameter has no designable adjustment, then ci has a

fixed value and is ignored. Similarly, if there is no uncontrollable variation, then ui = 0.

Each Yk is, therefore, a function of X = C + U, where C = (c1 .... ,) and

U (u . u).
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Given a set of constraints on the performances, let I(y 1, Yd) = 1 if all the con-

straints are met, and 0 otherwise. For given controllable parameters C, the parametric yield is

the percentage of the manufactured circuits with I = 1:

D(C) = J I[ yI(C+U) ..... Yd(C+U)] dr(u) * 10i%, (4.1)

where r is the distribution of U.

The broad strategy for yield maximization involves six steps. The examples will illus-

trate details of their implementation.

STEP 1: Assume models for the performances Yk as functions of the circuit simulator

inputs X = C + U:

Yk = f k M)+ error. (4.2)

The circuit simulator is deterministic, and the error term in (4.2) represents sys-

tematic departure of the assumed model fk (X) from the actual performance.

STEP 2: Design an experiment and simulate the circuits at the experimental design points.

STEP 3: Fit the models (4.2) to obtain the approximation Yk(X). Check if the model fits

well, and improve the model if necessary. For example, a circuit performance that

is too complex for accurate modeling can sometimes be identified as a composite

function of several subcircuit performances; this is exploited in Section 4.2.

STEP 4: The parametric yield of a circuit design C, defined in Eq. (4.1), is estimated by

Monte Carlo simulation. First, generate a (large) sample, Ui, i = 1,... ,NMC, from
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the distribution r of the uncontrollable variations. Then, compute

Y'k(C + U), i = 1 ....,NMc; k = 1,...,d. (4.3)

The estimated parametric yield is the percentage of samples that are acceptable:

-= I [ Y(C + U), .... Y(C + Ui) I * 100%, (4.4)
NMC i=1

where I is defined in Eq. (4.1).

STEP 5: Maximize the estimated yield Cd(C) with respect to C, and denote the resulting cir-

cuit design by C. We use the same Monte Carlo sample at each iteration of the

optimization algorithm. Because (D(C) is not necessarily a smooth function of C,

the simplex optimization algorithm [341 is used for optimization.

STEP 6: Obtain a "confirmatory" estimate of the yield at C°. We use the method described

in [3] which predicts the yield at C° from a new, smaller experiment. The use of

the circuit simulator for a Monte Carlo estimate of the yield at C' would require

an impractical number of runs.

In the examples below, at steps 1 and 3 we use quadratic regression models fit to the

data by least squares. At step 2 the inputs are selected by a Latin hypercube - such designs

were suggested by [25] for computer-simulation experiments. These simple tools lead to ade-

quate accuracy here.

Polynomial models may not fit so well in other examples with more-complex perfor-

mance functions. Also, the errors in model (4.2) are systematic and not the random errors
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usually assumed when fitting by least squares [17]. Alternative implementations for the

modeling, experimental design, and estimation steps are described in [35].

4.2. Application to Yield Maximization of CMOS Analog Circuits

Example A. CMOS comparator I

A CMOS two-stage comparator circuit is shown in Figure 4.1 [36]. The performances

of interest and their initial constraints are

Y I = dc gain (A, > 1000),

Y2 = propagation delay time (T1 < 170 ns),

Y3 = propagation delay time (T 2 < 170 ns).

The transient analysis of a comparator circuit is shown in Figure 4.2. The input voltages are

denoted by V+ and V-, and the output is denoted by V,,,. The time intervals T, and T 2 are

the differences between the switching times of the input V+ and the output voltage V,,.

The parameters used to represent the process variations and their [-30,+30] ranges are

u = PMOS channel length reduction (0.1 pm - ALe :5 0.7 pm),

u 2 = PMOS flatband voltage (0.5 V 5 Vfbp 5 0.8 V),

U3 = NMOS channel length reduction (0.1 pm _< ALN !5 0.7 P.m),

U4 = NMOS flatband voltage (-0.6 V S Vf < -0.4 V),

u5 = gate oxide thickness (37 nm < t,. <_ 43 nm),

U 6 = bias current variation (-3 A !5 A/ 8 :5 +3 pA).
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Figure 4.1 Two-stage CMOS comparator for Example A.
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In addition there is a single, yet very demanding, operating condition:

v = input dc voltage, VDC ( VDC = -3.5, 0, or 3.5 V).

For a circuit to be satisfactory, it must satisfy the constraints for (Yl, Y2, Y3) at all three levels

3 of V.

3 To maximize the yield, we identify four designable parameters and determine their

ranges empirically:

C6 = nominal bias current (40 pA < 1B < 60 pA),

C7 = width of transistors M1 and M2 (150 pn < W(M1, M2) < 300 .Ln),

c g = width of transistor M7 (30 pm < W(M7) <_ 60 pm),

c9 = ratio of the widths of M7 and M6 (1.6 < W(M6)/W(M7) _ 2.2).

The parameter ranges are normalized as follows: u 1,...- u 5, c 7, c8, and c9 to [-1,+1], and v to

3he discrete values [-1, 0, 1). The bias current is made up of the nominal value, c 6, and the

variability, u 6; the total range of 1B = C6 + U6 is 37 MIA < 1B <- 63 pA, which is then normal-

ized to [-1.3,+1.31. The distribution of U is that of six independent Gaussian variables with

mean zero and standard deviation a = 1/3.

Denote (u1, . . . , U5, c 6 + u 6, c 7, C8 , c 9, v) by (x1, ..., x10). The assumed models arc

10 10 10

Yk = Iok + 1: Pixi + 1. Pijkxixj+error, k = 1,2,3. (4.5)
i=1 i=lj=i

The constants P0k, Pit, and 3ijk , are (unknown) regression coefficients.

A 100-observation Latin hypercube experiment [25] is generated for the circuit simula-

tion: a minimum of 66 runs is required to fit the model (4.5), and the remaining 34 degrees
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of freedom permit some assessment of fit. Latin hypercube designs were developed for

computer-simulation experiments and are easy to construct. The experimental design is gen-

erated as follows. Each xi , except for x, and x10, takes the equally spaced values

-99/100, -97/100,..., 99/100, for the 10' runs, but in different random orders. Similarly, x 6 is

generated in [-1.3,+1.3] and x10 in the set (-1,0,1). Thus, each variable is exercised over its

range, and the variables are matched at random. The circuit descriptions are generated from

the experimental design by iEDISON [37], and SPICE is used for circuit simulation.

Table 4.1 lists part of the experimental design and the data.

For each of the three performances, the unknown coefficients in the model (4.5) are

estimated by least squares based on the 10(' -bserved runs. Since there is no random error in

the circuit simulation, statistical testing of the fitted model is inappropriate. Nonetheless, we

estimate the goodness of fit by R 2 [171 and R2PRS. The R 2 statistic measures the proportion

of the variability in the data "explained" by the regression, while R 2Fds is a modification that

is useful for detecting possible model defects (see Appendix B).

The quadratic regression model for gain gives a bad fit with R 2 = 0.914, but

R 2pRS = -0.02. This clear indication of lack of fit is caused by 11 points with unusually low

gains. For instance, at run number 96 the gain A, = 24 << 1000. We examined the circuit

simulation outputs at these anomalous observations, and found that either transistor MI (2

cases) or M7 (9 cases) is not operating in the saturation region. The small-signal gain

g= s [ I 3 gds6+gds7
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is low at these points, due to the large drain-to-source conductances of the unsaturated transis-

tors MI or M7 (gds, or gd,7 ).

To cope with these problems, we construct two new models for the terminal voltages of

M1 and M7:

Y4 = Vds - (Vgs1 - Vt 1) (Y4 > 0 for M1 to be saturated),

Y5 = Vj7 - (Vs7 - VtT) (y5 > 0 for M7 to be saturated).

Since SPICE produces values for Vdsl , etc., the data can be used to fit Y4 and y5 without

requiring new circuit simulations. The equations for Y4 and y5 fit very well, with

R 2(R2pRs) = 1.000(1.000), and 0.996 (0.957); they will be used in the yield optimization to

constrain the operating regions of transistors M1 and M7.

The eleven points with poor gains (Y4 < 0 or y5 < 0) are deleted from the dataset. The

models for the gain, A,, and the delay, T 2, fit very well to the remaining 89 observations,

with R 2 (R2 PRs) = 0.999 (0.982), and 0.998 (0.969). The model for T 1 does not fit as well,

however, with R 2 (R 2PRS) = 0.976 (0.559). We could try to improve the model for T1 , but it

turns out that the T 1 delays are small enough that they do not affect the yield anyway.

For a given C, the parametric yield can be predicted by Monte Carlo simulation using

the fitted models, Yk (C + U, v). We generate 500 samples Ui , i = 1 ,...,500 from the distribu-

tion r(U). The predicted yield is

1 500
i ) -I 1( YI( C + Ui, v),...,Y 5 ( C + Ui, v)). (4.7)

500 i~ V=-1.0.1

The performance constraints must be met for all three levels of v, hence, the product of indi-

cator functions.
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The yield is optimized with respect to C using the simplex algorithm. This is computa-

tionally inexpensive because we are using the fitted models and do not have to run the simula-

tor. For constraints Yi > 1000, Y2, Y3 < 170 ns, and Y 4, Y5 > 0, there are many designs with

very high yield. This suggests that the performance constraints may be tightened. Re-

optimizing with the new constraints on the two time delays, Y2, Y3 < 130 ns, produces the

design C* with c6 = 0.99, c 7 = -0.96, c8 = -1.00, and c9 = 0.77. The estimated yield is

$(C* ) = 95%. Further tightening of this constraint leads to drastically lower yields. How-

ever, as the design C" has the width M7 at its lower bound (c8 = -1.00), experimentation with

smaller widths of M7 may lead to further improvement. A similar comment may apply to c 6

and c7.

The regression models for the yield optimization may not approximate the performance

variations around C" very accurately. A confirmation experiment provides a more-accurate

estimate of the yield. The confirmation experiment follows [3]. The assumed model of the

responses is a quadratic of u1 ...... u6, and v. Data are collected according to the 48-run Latin

hypercube design varying u1,.... u 6 and v only. Models for Y l.... y 5 have R 2 (R 2 PRS) =

1.000 (0.944), 0.995 (0.605), 1.000 (0.918), 1.000 (1.000), and 0.998 (0.928). This suggest

the models of Y1, Y 3, Y4, and Y5 fit very well. The model for T 1 does not fit well, but again

it does not matter. The predicted yield 4(C) obtained from 200 Monte Carlo samples with

the fitted models is 93%. Figure 4.3 is a contour plot of the predicted parametric yield as the

constraints on the gain and delays vary.

From running the circuit simulator at the same 200 Monte Carlo samples (this involves

600 circuit-simulator runs, because there are three levels of the operating condition v), the

yield at C is 92%. This close agreement with 93% shows that the 48-run confirmation
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Figure 4.3 Contour plot of yield from 36-mun confirmation experiment for Example A
(yield contour interval = 10%).
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experiment would have been sufficient. Moreover, the contour plot in Figure 4.4 of the yields

from the SPICE runs agrees well with that in Figure 4.3.

Example B. CMOS Comparator II

A second CMOS comparator consisting of 53 MOS transistors is shown in Figure 4.5.

The circuit topology follows from the techniques described in [38]. The performances of

interest and their constraints are

AV = dc gain (A, > 30),

co.3d = 3 dB bandwidth (cd > 60 MHz).

In this example there are 12 parameters of interest. The first five are the uncontrollable

statistical variations u 1, . . , u5 for the critical MOSFET parameters already described in Ex-

ample A. The distributions of the device parameters are again independent Gaussian, but their

[-3a,+3o] ranges are different. The remaining seven parameters are designable, with no sta-

tistical variation:

C 6 = width of transistors M IA and M lB

(30 jitm <5 W (M 1A , M 1B ) <5 80 pmr )

C7 = width of transistors M2A and M2B

(4 .im - W(M2A, M2B) < 12 p.n),

c g = ratio of the widths of M 3A and M 3B to M 2A and M 2B

(1.1 < W(M3A, M3B)/W(M2A, M2B) <1.9),
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Figure 4.4 Contour plot of yield from 600-run circuit simulator runs for Example A
(yield contour interval = 10%).
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c9 = width of transistors M 4A and M 4B

(15 n 5 W(M4A,M4B) <70 pm),

c 10 = width of transistors M 5A and M 5B

(15 pm 5 W(M5A, M5B) 35 pm),

cII = width of transistors M6A and M6B

(4pm <W(M6A, M6B) < 12 pin),

C 12 = ratio of the widths of M7A and M7B to M6A and M6B

(1.1 5 W(M7A, M7B)/W(M6A, M6B) < 1.9).

All the parameters are normalized to the range [-l,+1l. Part of a 100-run Latin hypercube

design for the 12 parameters u 1 ., u 5, c6 ... , c 12 is listed in Table 4.2, along with the

data.

Modeling the gain by a quadratic model in u .. u5, C6, C . c 12 gives a fairly poor

predictor: R2 = 0.999 but R 2PRS = 0.750. To improve the prediction of the gain we note that

the comparator circuit consists of two stages. If AV, and A, 2 denote the gains at the two

stages, then

AV =-AVI * AV2. (4.8)

We therefore try modeling A,1 and A, 2, from which A, can be predicted.

The transistors in the first and second stages are connected together at nodes I and 2,

and we use Vc to denote the common dc voltage at these two nodes, which is a parameter

affecting A,2 . We assume that the models for

Yi = dc gain of the first stage, AV ,,

Y2 = dc voltage at nodes 1 and 2, Vc ,
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should be functions of u, . u.. u 5 and c 6, . c.. c 9, while

Y3 = dc gain of the second stage, A, 2,

depends on u1, . . . , U5,c 9, . .. ,c 12, and VC .

In the models for Y3 below, Y2 is treated as another input parameter, and we write

(x1, .. ,x 13) for (u1, U . 5. ... c 12, 2). The assumed quadratic equations for A, I and

Vc are

9 9 9
Yk = 30t + Yf3ikxi + YXf 3 ijkxixj + error, k = 1,2. (4.9)

i=1 i=lji

Similarly, the assumed model for A,2 is a quadratic in (x1 ...... x5 , X9, xI 0 , x 1 , x1 2, x1 3). The

regression models of YI ...... Y3 have R2 (R2pRs) values of 0.999 (0.995), 1.000 (0.999), and

0.995 (0.945), respectively, suggesting very good predictive capabilities for A, 1, Vc, and A, 2.

We note that A,1 is strongly affected by c 6 and c 8, while A, 2 depends strongly on c 12.

Modeling

Y4 = the 3 dB bandwidth, 03dB,

by a quadratic model in u1, . . ., u 5, c 6, .... c 12 gives a fairly good predictor: R 2 = 0.999

and R 2pRs = 0.851. Attempting to improve the predictor by decomposing the circuit into two

stages is not successful for bandwidth. An approximation relating the overall bandwidth to

the bandwidths of the two stages, ignoring higher-order poles, leads to substantial error here.

Thus, we retain the quadratic model in u 1, . . ., u5, c 6, . . ., c 12 for the bandwidth.

Monte Carlo estimates of yield for a circuit defined by C are based on 500 samples, Uj,

i = 1 ,...,500. The fitted models are used to make predictions of the bandwidth, the gain of

stage 1, and the voltage Vc . Then, the predicted voltages are fed into the model Y3 to predict
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the gain of stage 2. The predicted gain is computed from Eq. (4.8). The estimated yield

$(C) is the percentage of samples with A, > 30, and "dB > 60 MHz.

The yield is optimized with respect to C using the simplex algorithm. A design C* with

C6 = 0.60, C7 = -1.00, c8 = 0.10, c 9 = -1.00, cl 0 = 0.85, cl = -0.98, c 12 = -0.58, and

(b(C*) = 100% is found.

For the confirmation experiment, we use a 36-run Latin hypercube design varying only

the uncontrollable parameters u1,...,u 5. The models for Yl..... Y 4 have R 2 (R2pRs) = 1.000

(1.000), 1.000 (1.000), 1.000 (0.998), and 0.945 (0.649), respectively. This suggests that the

models U 1, Y2, and Y3) of A, 1, Av 2 , and VC fit very well. The predictor Y4 of od is less

accurate. Nonetheless, the yield of 99.0% estimated by the four models from 500 Monte Car-

lo samples agrees well with a predicted yield of 99.2% from running the circuit simulator 500

times from the same Monte Carlo samples. Again, the small confirmation experiment is ade-

quate. Figure 4.6 is a contour plot of the yield (from the 500 circuit simulator runs) as the

constraints on the gain and bandwidth vary. It indicates that there is a large region where the

yield is close to 100%. This explains why our predictor of bandwidth is adequate here. The

plot also indicates that the bandwidth is not a smooth function of the inputs: there is a rapid

decrease in yield in certain parts of the region. This explains the difficulty in modeling the

bandwidth by a quadratic function. The more-flexible models suggested in (351 may lead to a

better predictor.
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Figure 4.6 Contour plot of yield from 500-mun circuit simulator runs for Example B
(yield contour interval = 10%).
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4.3. Concluding Remarks

In this chapter we presented a new method for parametric yield optimization of MOS

VLSI circuits. By constructing compurationally cheap models for the circuit performances,

we achieve high yields with relatively few simulator runs. Based on our experience on this

and other examples:

1. Engineering knowledge should be used to select the most basic performances, as illustrated

by the modeling of A,1 and A, 2 in the second example. These are more likely to admit

simple polynomial approximations of high accuracy, from which the performances of

interest can be constructed.

2. If there are ill-behaved observations, such as catastrophic failures, and an assumed model

does not fit well, the designer should identify the causes of the failures. As we demon-

strated in the first example, additional design constraints can be included to keep the yield

optimization away from undesirable regions of the designable parameters.

3. Points 1 and 2 suggest that statistical modeling should incorporate engineering insights.

4. With careful modeling, accurate approximations to crucial performances can be developed

with relatively few circuit simulations. Effective yield optimization is possible with these

computationally inexpensive models.
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CHAPTER 5.

PARAMETER DESIGN METHOD FOR OFF-LINE QUALITY CONTROL

Taguchi's off line quality control method [9] for product and process improvements has

gained much interest recently in engineering. Instead of maximizing the parametric yield, the

Taguchi approach [9] employs the design and analysis of experiments to design quality "into"

products, such that they are insensitive to the manufacturing process and environmental varia-

tions. Taguchi's approach often requires a prohibitively large number of experimental runs,

however. The Taguchi method collapses data from many (circuit simulator) runs into his so

called "signal-to-noise ratio," just as the yield gradient method collapses data when computing

the yield gradient.

In this chapter we extend the yield optimization method in Chapter 4 to achieve off-line

quality control. Again, the proposed method models the circuit performance as a function of

all parameters of interest. For a given set of designable parameters the fitted models predict

the circuit performances as the uncontrollable parameters vary. This leads to a prediction of

the Taguchi loss statistic, instead of parametric yield. The loss statistic is then numerically

minimized with respect to the designable parameters. We give a circuit example where the

Taguchi objectives are met with about two-thirds fewer runs than [9].

The Taguchi method is described in Section 5.1. The proposed method is detailed in

Section 5.2. Section 5.3 compares the Taguchi and the proposed approach in a CMOS clock

skew minimization example. Discussion is given in Section 5.4.
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5.1. Taguchi's Parameter Design Method

Taguchi's off-line quality control methods [9] emphasize designing quality into products

(circuits), so that they are less sensitive to sources of variability. Parameter design, an impor-

3 tant step in off-line quality control, is the search for levels of designable (controllable) param-

eters that lead to a product robust to the variability in the manufacturing process and environ-

mental conditions (noise). A key feature in [9) is the separation of the designable parameters

and uncontrollable statistical variation for the design of experiment. Kackar [39], and

Hunter [40] gave very readable accounts of the main ideas; Kackar and Shoemaker [41], and

Phadke [42] provided some examples.

We use y to denote the circuit performance of interest, and C and U to denote the con-

3I  trollable and uncontrollable variations, respectively. The distribution of U is denoted by F(U).

Taguchi measures the quality of a circuit C by a a loss statistic [9]:

L(C) = f (y(C,U) - Ytaget) 2 F(U) dU, (5.1)

which is the expected squared deviation of the circuit performance from its target value,

I Ytarget" The objective of parameter design is to find C that minimizes L (C).

Taguchi optimizes L (C) with respect to C in a two-step procedure [40]. First, signal-

to-noise ratios are computed from the data, which are then used to optimize the loss statistic.

The connection between the signal-to-noise ratio and the loss statistic is given in [43].

Taguchi's design strategy for off-line quality control involves six steps. The example

3 will illustrate details of its implementation.
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STEP 1: Assume a model of the loss statistic

L( C )= g( C, 0) + error. (5.2)

The model g is an assumed-known function of C (for example, a polynomial

model), and 0 is a vector of unknown constants to be estimated from the data.

The error term represents systematic departure from the assumed model. We

prefer to minimize L (C), because it underlies the Taguchi philosophy, rather than

maximize a signal-to-noise ratio. The disadvantages of the signal-to-noise ratio

are discussed in [44].

STEP 2: Design a control array experiment for C and a noise array experiment for U. For

every C in the control array, simulate the circuits at every U in the noise array.

STEP 3: Compute estimates of the loss statistic L (C) for every point in the control array.

Fit the data to model (5.2).

STEP 4: Minimize L (C) with respect to C, subject to design constraints.

STEP 5: Conduct a confirmatory experiment to evaluate L (C) by fixing C at the value(s)

found in STEP 4 and varying U according to F(U).

A major problem of Taguchi's approach is the large number of experimental runs due to

the crossing of the control and noise arrays. Moreover, it is often difficult to identify an

appropriate model for the loss function. In the following section, we will discuss how the
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yield optimization method in Chapter 5 is adapted to achieve off-line quality control, but with

far fewer runs than the Taguchi experiment.

5.2. Proposed Off-line Quality Control Method

The proposed approach involves five steps:

STEP 1: Design a single experiment to predict the performance as a function of the con-

trollable parameters C and the uncontrollable statistical variables U:

y (C, U) = f (C, U, [i) + error. (5.3)

The model f is an assumed-known function of both C and U, and 13 is a vector of

unknown constants. We do not use separate control and noise arrays; considerable

economy in the number of observations can result from designing a single experi-

ment for both factors.

STEP 2: Simulate the circuits at the design points, and fit the performance model 9 (C,U).

For a given C predict the loss statistic L (C) from the estimated response function.

For example, the predicted loss statistic (5.2) is

L(C) = f J 2 (C, U) F(U) dU. (5.4)

In the example below, the density P(U) is taken as combinations of the best- and

worst-case current files of the transistors. This is mainly for convenience.

STEP 3: Minimize L(C) as a function of C. In practice, the mathematical optimization

will be tempered by engineering and cost considerations.
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STEP 4: Conduct a confirmatory experiment to evaluate L (C) by fixing C at the value(s)

found in STEP 3 and varying U according to F(U).

STEP 5: Iterate if necessary. For instance, if the optimization step suggests values of C

outside the design region which are technically and economically feasible, then the

design region could be shifted.

5.3. Example: Minimization of Process Dependent Clock Skew

This example considers a CMOS clock driver [45] shown in Figure 5.1. From the mas-

ter clock CLKM, the circuit generates outputs CLK and CLK. The clock skew is defined to

be the difference in the output delay times of the CLK and CLX signals. Because each clock

signal switches twice per machine cycle, two clock skews SR and SF can be measured (in

units of nanoseconds), as illustrated in Figure 5.2.

The design objective is to determine the channel widths { w 1, ... w 6} for the transistors

M I ..... ,M6 in Figure 5.1 that give the smallest clock skew in the presence of device parame-

ter variability. To allow for quadratic effects, the experiment is carried out with each width at

three levels, denoted by -1, 0, 1.

Shoji [45] investigated the clock skew example and proposed an empirical method for

minimizing the skew. In [45], the uncontrollable statistical variabilities are represented by the

high (H), medium (M), and low (L) current files of the P- and N-channel MOSFET transis-

tors. These device parameter combinations are coded 1,...,5 below. For the purpose of com-

parison, we will use these device parameter combinations in our experiment.
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We will consider loss statistics that combine two skews. For fixed w = (w1 ... W ,

there are five pairs of skews corresponding to device parameters {PH-NH, PH-NL, PM-NM,

3 PL-NH, PL-NL). Denote these skews by Sl(w) .... ,S 10(w). The target skew is zero, and the

logarithm of the average squared-error loss is

II Lsq (w) =log YO, Si (w)]. (5.5)
10i=1

3 The logarithmic transformation, being monotonic, does not affect the optimal w but is

relevant in Section 5.3.2 when Lyq is modeled directly. A more-conservative performance

I measure is the worst-case skew

L, . (w) = max [ IS(w)1, . . . , iS10(w)I 1. (5.6)

I
5.3.1. Modeling the circuit performances

Several considerations determined the choice of model for the clock skews as functions

3 of the controllable parameters and the uncontrollable statistical variation.

I * Because curvature and interactions cannot be ruled out we adopt a second-order polyno-

* mial model.

3 . There are only five combinations of the uncontrollable statistical variations {PH-NH,...,

PL-NL). For simplicity, therefore, we treat these combinations as a single qualitative

factor at five levels 1,...,5.

I
I
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* There are two chains of transistors in Figure 5.1: (M1,...,M4) and (M5,M6). This sug-

gests that only seven interactions wiw 2 , WlW 3 , WlW 4 , w 2 w 3 , w 2 w 4 , w 3w 4 , and w 5 w 6

involving transistors in the same chain need be considered.

* No similar reasoning leads to a reduction in the number of interactions between the

widths and the device factor, however. Although one might suspect, for example, that

there would be no interaction between the widths of the P-channel transistors and the

component of the device factor representing variability in current-driving capabilities of

the N-channel transistors, this is not the case. The two types of transistors are intercon-

nected. The interconnections between the transistors allow the effects of the device

parameters to differ at various transistor sizes. Easterling [46] pointed out this connec-

tion between interactions and robustness to sources of variability.

Thus, we model the two skews as a function of C and = j by

Y(w,j) = PO + PIWI + .... + P6 w 6 4 IIWI 2 + ' ' '+- 66w 6
2

+ 01 2WIW 2 + P13WlW3 + P 14WlW 4 + 023 W2 W3 + j32 4W 2W 4

+ 034W3W4 + P56W5W6 + Yj + S1jW + " • " + 86jW 6 + r. (5.7)

The unknown constants yl,...,y5 and 811,...,865 are the main effects for the qualitative device

factor and the interaction effects between the designable and device factors. Because the

observations are derived from a deterministic circuit simulator, there is no random error, and F

represents systematic departure from the assumed linear model. Because not all the unknown

constants are identifiable, we arbitrarily set Y5 = 81= = 865 = 0. "T-his leaves 48 unk-

nown constants to be estimated.
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We designed a 60-observation experiment to estimate the 48 unknown constants in

model (5.7). The number of runs is fairly arbitrary, clearly, at least 48 are needed, and we

wanted a modest number of degrees of freedom to assess potential lack of fit. Again, the aver-

age mean-squared error criterion in the ACED package [281 was used to obtain the design

(see Section A.1). (This criterion also includes the variance arising from random error; we

weighted the bias component to be dominant because there is no random error) The use of a

computer package such as ACED also circumvents the difficulties in designing this experi-

ment: only some of the interactions need to be estimated and the five-level device factor

space is not a regular factorial arrangement. The experimental design and the resulting data

are given in Table 5.1.

The two skews are separately modeled via Eq. (5.7). Least squares estimation of the

unknown constants allows us to predict the two skews at untried levels of the designable and

device factors. In the presence of systematic error rather than random error, statistical testing

is inappropriate. Nonetheless, the root mean squared errors of the least squares analyses for

the two skews are 0.03 and 0.08 (relative to data ranges of about -3.9 to 0.2 and -2.2 to 3.8).

The R 2 values are 1.000 and 0.999, suggesting that the models fit well. We note that

* The first-order effects for both the designable and device factors are all large.

" Many of the second-order (quadratic and interaction) effects are moderately large.

" The contrast between high and low levels of the N-channel device factor is larger than

that for P. It is often found that the N-channel variability is more critical.
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Table 5.1 Experimental design and data for modeling clock skews.
(Two skews are observed for each run.)

Noise
Run Transistor Width w Level Skews

1 -1 -1 -1 -1 -1 -1 3 -1.289 -0.307
2 -1 -1 -1 -1 -1 0 4 -0.636 -1.199
3 -1 -1 -1 -1 1 -1 1 -1.219 0.907
4 -1 -1 -1 1 1 -1 2 -1.151 1.678
5 -1 -1 -1 1 1 1 3 -0.449 -0.422
6 -1 -1 -1 1 1 1 5 -0.510 -0.343
7 -1 -1 0 -1 -1 -1 5 -2.758 0.157
8 -1 -1 1 -1 -1 1 2 -2.414 -1.309
9 -1 -1 1 0 -1 1 5 -1.920 -1.633

10 -1 -1 1 1 -1 1 4 -0.809 -1.546
11 -1 -1 1 1 0 0 1 -1.227 -0.496
12 -1 0 -1 -1 0 1 2 -1.412 0.041
13 -1 0 -1 1 0 1 4 -0.452 -0.628
14 -1 0 0 0 -1 -1 1 -1.127 0.062
15 -1 0 1 -1 1 0 5 -3.860 2.011
16 -1 0 1 0 0 -1 4 -2.107 0.862
17 -1 1 -1 -1 -1 -1 2 -2.300 1.350
18 -1 1 -1 -1 -1 1 3 -1.118 -0.466
19 -1 1 -1 0 -1 0 5 -1.495 0.070
20 -1 1 -1 1 0 1 1 -0.512 -0.236
21 -1 1 -1 1 1 -1 4 -1.184 1.592
22 -1 1 1 -1 -1 -1 1 -2.126 0.479
23 -1 1 1 -1 1 1 4 -2.504 0.931
24 -1 1 1 0 1 -1 3 -2.769 2.567
25 -1 1 1 1 1 -1 5 -3.315 3.759
26 -1 1 1 1 1 1 2 -1.9&2 1.149
27 0 -1 -1 -1 0 -1 5 -1.927 0.365
28 0 -1 -1 0 1 1 4 -0.452 -0.922
29 0 -1 0 1 -1 0 5 -0.855 -2.175
30 0 -1 1 -1 0 0 4 -1.768 -0.748

(continued)
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Table 5.1 (continued)

31 0 -1 1 1 -1 1 3 -0.715 -2.177
32 0 0 -1 0 1 1 1 -0.510 -0.283
33 0 0 0 0 -1 0 2 -1.401 -0.715
34 0 0 1 1 0 1 5 -1.576 -0.639
35 0 1 -1 -1 1 -1 3 -1.841 2.004
36 0 1 0 0 0 1 5 -1.704 0.004
37 0 1 1 1 1 0 4 -1.491 0.724
38 1 -1 -1 -1 1 1 2 -0.852 -1.439
39 1 -1 -1 0 0 1 3 -0.266 -2.196
40 1 -1 -1 1 -1 -1 1 -0.067 -1.691
41 1 -1 0 -1 1 0 1 -1.155 -0.583
42 1 -1 0 1 1 -1 3 -1.096 0.053
43 1 -1 0 1 1 0 4 -0.649 -1.010
44 1 -1 1 -1 -1 1 1 -0.958 -1.978
45 1 -1 1 0 1 0 5 -2.049 -0.687
46 1 -1 1 1 -1 -1 2 -1.545 -1.504
47 1 0 -1 -1 -1 1 5 -0.928 -2.081
48 1 0 0 -1 1 1 4 -1.197 -0.423
49 1 0 1 -1 1 1 3 -2.007 -0.161
50 1 1 -1 -1 0 0 1 -0.889 -0.390
51 1 1 -1 1 -1 -1 3 -0.659 -0.482
52 1 1 -1 1 -1 -1 5 -1.166 -0.121
53 1 1 -1 1 -1 1 2 -0.285 -1.440
54 1 1 -1 1 -1 1 4 0.229 -1.841
55 1 1 0 -1 1 1 5 -2.269 0.539
56 1 1 0 1 -1 1 1 -0.236 -1.312
57 1 1 0 1 -1 1 1 -1.642 -0.343
58 1 1 1 -1 -1 0 5 -3.055 -0.533
59 1 1 1 -1 1 -1 2 -3.522 2.585
60 1 1 1 1 0 0 3 -1.440 -0.175
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For fixed w, the two models are used to predict five pairs of skews corresponding to the

five device factor levels. Denote these 10 predictions by 9 1(w), . 9.1. S 0 (w). The loss statis-

tics in Eqs. (5.5) and (5.6) can then be estimated by

L q()=log 10 (5.8)

and

iwc(w) = max[ 1S1(w) ...... 1S10(w)l ]. (5.9)

The next step is to minimize either of these loss statistics with respect to w. Discussion

of this and the validation from confirmatory experiments will be presented in Section 5.3.3,

along with a comparison of alternative design and modeling strategies.

5.3.2. Modeling the loss statistics directly

For comparison, we also conducted an experiment with separate control and noise arrays,

as has been advocated by Taguchi for optimizing through direct modeling of a performance

measure.

The choice of a model for a loss statistic L is problematic. Whereas the engineer may

have substantial background knowledge concerning the underlying circuit performance,

approximate models for complex loss statistics are typically not so intuitive. In this example,

when modeling the skews, there is an engineering basis for omitting some designable-factor

interactions. However, this need not imply that the same interactions are negligible when

modeling the loss statistics, which are nonlinear functions of the skews. Indeed, these interac-

tions turn out to have fairly large effects. As a simple illustration, Y = X + x2 has no
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interaction between two factors x 1 and x 2, but the loss y 2, for example, clearly does. A log

transformation is often suggested to reduce interaction effects in signal-to-noise ratios similar

to the squared error loss in Eq. (5.8) (see for example [39]). In the absence of engineering

intuition, however, we adopt a full second-order model in w for both loss statistics (though

hesitantly for the non-smooth Lw):

6 6 6
L(w)= Po + i wi + Oiw + E. (5.10)i1l i~l=

There are 28 unknown constants, and we designed a 40-run (control array) experiment

for the designable factors, again using ACED. As when modeling the clock skews, the size

of the control array is somewhat arbitrary. A minimum of 28 runs is needed, and we allow

12 extra degrees of freedom to measure the lack of fit. Crossing the control array with the

noise array of size five leads to a total of 200 runs. Part of the experimental design and data

are given in Table 5.2. For a given w in the control array, the data generated across the

noise array collapsed to the loss statistics Lsq (w) and L,,, (w) in Eqs. (5.8) and (5.9). Fitting

model (5.10) to these observed statistics provides direct predictions to Lsq(w) and L,, (w) at

untried w 's, which can be optimized with respect to w. The root mean squared errors for

the Lyq and L,, fits are 0.1 and 0.25 relative to data ranges of -0.5 to 0.8 and 1.0 to 3.9. Fit-

ting by least squares gives R 2 values of 0.824 for Lsq in Eq. (5.8) and 0.907 for L,, c in Eq.

(5.9). Qualitatively, then, the models do not fit quite as well as those for the skews.

As noted in Section 5.1, this experiment does not strictly follow the pattern of analysis in

the examples given by Taguchi [9]. That paradigm fits additive models to the loss statistics

(ignoring interactions) and would optimize the level of each transistor width separately. In

this example, using the data from a (40 x 5)-run experiment, such an approach leads to
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Table 5.2 Part of the crossed array experimental design an, data for modeling loss
statistics directly. (Two skews are observed for each run.)

Skew at Noise Level
Runs Transistor Widths w 1 2 3 4 5

1-5 -1 -1 -1 -1 0 1 -0.73 -1.12 -1.01 -0.83 -1.30
-0.76 -0.78 -0.76 -0.86 -0.78

6-10 -1 -1 -1 1 1 -1 -0.74 -1.15 -1.01 -0.88 -1.43
0.60 1.68 1.16 0.72 1.97

11-15 -1 -1 0 0 -1 -1 -0.98 -1.85 -1.44 -1.03 -2.06
-0.46 0.01 -0.34 -0.57 -0.13

16-20 -1 -1 1 -1 0 -1 -2.11 -3.45 -2.85 -2.39 -3.91
0.39 1.22 0.79 0.47 1.43

21-25 -1 -1 1 1 1 1 -1.15 -1.44 -1.46 -1.39 1.79
-0.29 -0.29 -0.19 -0.22 -0.09
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extremely poor predictions (given below). Also, Taguchi's L 18 experimental design could be

used for the designable factors. The comparison we make is more consistent with our

3 methods.

U
5.3.3. Results and comparisons

We now give results for the following strategies:

I (I) the 60-run experiment for the skew models (5.7), from which loss statistics are

3 predicted indirectly, and

(II) the (40 x 5)-run, crossed array experiment for modeling the loss statistics directly via

Eq. (5.10).

I
We also consider a hybrid strategy:

I (III) the (40 x 5) experiment from strategy II but modeling the skews to predict the loss

statistics as in strategy I.

3 Table 5.3 gives results for the loss statistics Lsq. Listed there are the best-three sets of

transistor dimensions w over the 36 grid (-1,0,1}6 as predicted by each of these three

strategies. The last column gives the true Lsq 's from confirmatory experiments. Similarly,

Table 5.4 presents the results for the loss statistic L,,. Key featt.-es of these results are:

3 The confirmatory experiments indicate strategy I predicts the skews accurately enough

to give predictions very close to the actual losses.
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Table 5.3 Predicted best three circuit designs for the squared-error loss statistic.

Lsq
Experiment Modeling Best w on 36 Cube Predicted Actual

60 runs skews via (5.7) 0 0 -1 1 1 1 -0.90 -0.90
1 1 -1 1 1 1 -0.76 -0.77

-1 -1 -1 1 1 1 -0.68 -0.72

40 x 5 runs Lsq via (5.10) -1 1 -1 1 0 1 -0.38 -0.50
-1 0 -1 1 0 1 -0.31 -0.61
-1 1 -1 1 -1 1 -0.30 -0.41

40 x 5 runs skews via (5.7) 0 0 -1 1 1 1 -0.89 -0.90
1 1 -1 1 1 1 -0.76 -0.77

-1 -1 -1 1 1 1 -0.69 -0.72

Table 5.4 Predicted best three circuit designs for the worst-case loss statistic.

Lwc

Experiment Modeling Best w on 36 Cube Predicted Actual

60 runs skews via (5.7) 0 0 -1 1 1 1 0.50 0.53
-1 -1 -1 1 1 1 0.56 0.51
1 1 -1 1 1 1 0.63 0.66

40 x 5 runs L., via (5.10) -1 0 -1 0 0 1 0.93 1.07
-1 0 -1 0 1 1 1.05 1.17
-1 1 -1 0 0 1 1.06 1.36

40 x 5 runs skews via (5.7) 0 0 -1 1 1 1 0.50 0.53
-l -1 -1 1 1 1 0.52 0.51
1 1 -l 1 1 1 0.63 0.66
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Strategy I gives more reliable predictions and superior circuit designs (small actual

losses) than strategy II. These differences are of importance; for example, a reduction

3 of the worst-case skews from 1.07 ns to 0.53 ns is of practical significance.

I Strategies I and IIl give virtually identical results. Tnls shows that a well-chosen,

3I small experiment can be very adequate.

Comparing the results for all three strategies indicates the superiority of modeling the

skews rather than modeling the loss statistics directly.

Fitting additive models (ignoring interactions) to the loss statistics from a (40 x 5) run,

crossed-array experiment and optimizing the level for each transistor width separately

produces even worse predictions. For example, the predicted best squared error is

3 -2.39, but the actual loss computed from a confirmation experiment is -0.58.

3 • Strategy I gives the same best-three circuit designs for the two loss statistics. This is

some indication that even better performance might be obtained by another experiment

by changing the ranges of the last four transistors widths. This is borne out by the

3 results for minimizing the predicted loss statistics over the continuous region [-1,1]6

rather than the discrete region { -1,0,1 )6. Such optimization of the predictor Lq from

strategy I leads to w = {-0.07, 0.10, -1.00, 1.00, 1.00, 1.00}, so that the last four

I optimal widths are on the boundary. The implication is going beyond the boundary

3 could lead to further improvement.

I
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5.4. Discussion

One reason why our proposed method gives reliable predictions with few observations

here is that the skews admit simple models. Moreover, engineering understanding of the

underlying circuit performance facilitates model identification. Another, more general advan-

tage of modeling the underlying performance rather than a loss statistic is that collapsing the

data to a loss statistic could hide important relationships in the data.

Clearly, more empirical experience is required to determine the general usefulness of the

proposed strategy. In another application, a sense-amplifier circuit [47], the proposed method

with 60 observations gives more accurate predictions of the losses than modeling the loss

statistics with a crossed array experiment of 200 runs. Again, about two-thirds of the obser-

vations are saved. In this example there is little difference in the actual performances of the

optimized circuit designs.

We used a computer-aided statistical design package to automatically generate the exper-

imental designs. This kind of tool avoids many of the complications often experienced when

using catalogued experimental designs. For example, the user can concentrate on the model

without worrying about matching the desired interactions to the aliasing structure. We believe

that the widespread adoption of these tools and increased attention to modeling rather than

combinatorics would encourage the experimentation needed to improve quality. Similarly,

model fitng and the minimization of predictions over a grid are straightforward using, for

example, SAS [29].

These methods can be extended to physical experiments with random error. In such

experiments noise (process) variability is due to unmodeled sources (measurement error, omit-
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ted variables, etc.) as well as the manimlation of the noise variables. If the unmodeled

sources are unimportant or lead to a noise component with constant variance, there is little

technical difficulty in extending our methods. Nonconstant variance requires further study,

however.

II

II
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CHAPTER 6.

CONCLUSIONS

In this dissertation we have presented a new circuit performance modeling approach to

statistical circuit design. It is demonstrated that fitted models of the circuit performances, ob-

tained from a statistically designed experiment incurring a small number of circuit simulator

runs, can be used as accurate and computationally inexpensive substitutes for the circuit simu-

lator for statistical design and analysis. This modeling approach has been applied to

parametric yield prediction [2,3], yield optimization [7,8], and achievement of off-line quali-

ty control [47,481. These algorithms have been implemented into the iEDISON design pack-

age [371.

In Chapter 2 we reviewed several methods to represent the distribution of the MOSFET

device parameters. It is concluded that the conventional best- and worst-case analyses ap-

proach to estimate the range of the device parameter variations is inadequate. An alternative

method that uses four critical MOSFET parameters to represent the device parameter distribu-

tion is presented. In this method, the other device parameters are treated as functions of the

critical parameters. The critical ,arameter approach is used in our yield prediction and optim-

ization examples in Chapters 3 and 4.

In Chapter 3 we introduced a new method for circuit performance modeling and

parametric yield prediction. We modeled the circuit performances by computationally inex-

pensive approximating functions of the critical parameters. An experimental design that takes

replicated observations and a statistical F-test procedure aue used to assess the adequacy of
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the four critical parameters and the performance model. It is found that sometimes there are

more than four critical parameters; engineering knowledge has been used to identify additional

critical parameters. A systematic method for critical parameter selection may lead to more

reliable results.

The examples in Chapter 3 showed that the circuit performance and parametric yield of

many digital circuits can be modeled accurately from about 10 runs of the circuit simulator, if

the critical parameters are sufficient. Usually a circuit performance, such as delay and

power, can be well approximated by a linear equation with four or five critical parameters,

thus, the small number of runs.

The statistical modeling of analog circuit performances is more complicated. Analog cir-

cuit performances, such as gain and bandwidth, usually depend strongly on the operation

region of the MOSFET transistors (off, linear, or saturation region). If the statistical varia-

tions cause a MOSFET to operate outside the region specified by the circuit designer, there

may be a dramatic shift in the performance. A linear or quadratic approximation to the per-

formance function may be inadequate. As a result, statistical modeling is not automatic, and

engineering knowledge is often needed to identify and fit the model. With careful modeling,

however, accurate approximations to the performances can be developed with relatively few

circuit simulations.

In Chapter 4 we presented a new parametric yield optimization method. Yield gradient

methods for parametric yield maximization usually compute the yield gradient from many cir-

cuit simulator runs; this often leads to a large number of runs and hide important relationships

in the data. Our method divides yield optimization into two separate steps: (i) Model the cir-

cuit performance by an approximating function of the inputs to the circuit simulator,
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computationally inexpensive models, optimize the yield with respect to the designable circuit

parameters using a proven optimization technique. This approach optimizes the parametric

yield with about 100 runs and avoids the complicated yield gradient computation.

In Chapter 5 we applied the circuit performance modeling method to achieve off-line

quality control. The Taguchi method for off-line is reviewed. Taguchi's method models the

loss statistic of a product, and typically requires a large number of runs. Our method uses

fitted models of the circuit performances to predict Taguchi's loss statistic and avoids the

nested Taguchi experiments. We showed by example that Taguchi's design objectives can be

met by our method with about one-third of the runs.

Clearly, more experience is needed to assess the circuit performance modeling approach.

There is substantial industrial interest in this design methodology, and we expect our methods

to be tested on larger circuits in the future.

We now present some topics for future research:

*, Statistical parameter extraction. The extraction of the device parameters from meas-

ured I-V characteristics is usually formulated as curve fitting by non-linear least

squares. A more rigorous extraction methodology that states the confidence limits on

the parameter estimates is needed.

* Screening of the critical parameters. In this research the four critical MOSFET

parameters in [1] are used. These four parameters are found to be inadequate in some

situations, however. The more rigorous screening techniques summarized in [19] may

lead to better results.
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i Mismatch in the device parameters. The device parameter variations within a die are

assumed to be insignificant in our research. In high performance analog circuits, intra-die

parameter mismatch may lead to significant degradation of the circuit performances. A

new methodology to design and analyze circuits with parameter mismatch is desirable.
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APPENDIX A.

THE DESIGN OF EXPERIMENT

A.1. Introduction

For a given physical system (circuit), denote the inputs to the system by X and the

response by y. The relation between the response and the inputs is

y = h(X) + e (A.1)

where h (X) is a systematic function of X, and s is a random error due to variations in the ex-

perimental conditions. Typically, e is assumed to take a Gaussian distribution with zero mean

and variance a2.

The problem is to

(i) Identify a model of the system response.

(ii) Select inputs X 1, .. , XN to run the experiment, such that approximation 9(X), ob-

tained from fitting y (X),.....y (XN) to the assumed model, predicts the response accu-

rately (experimental design problem).

In a physical experiment that has randomness, the fitted model 9 is subjected to two

sources of errors:

0 The error due to uncertainties in the observations (sampling, or variance error).

0 The error due to the systematic departure of the model from the actual response func-

tion (lack of fit, or bias error).
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Figure A. I shows an extreme case in which the model and the actual response h (X) have

the same form. Due to the random error in the observations, the fitted model is different from

h(X) (variance error). For instance, sampling uncertainties lead to distinct fitted models,

3 ,(X) and 9,1(X), in Figure A.1. As the sample size increases, the variance error will

decrease to zero.

IFigure A.2 shows the other extreme case in which there is no random error, e.g., an

3 experiment conducted on a computer. In this case, least square regression becomes curve

fitting. The error in the fitted model 9(X) will not decrease to zero, even for a large sample

size, due to the systematic difference between the model and h (X).

I
A.2. Integrated Mean-squared Error Criterion

Box and Draper [49] introduced the integrated mean-squared error (IMSE) c '-erion for

I the design of experiment. For a given X, the expected squared error of a fitted model is

3 MSE [ 9(X) ] = E[ 9(X) - h(X) 12. (A.2)

3 Integration of Eq. (A.2) over the experimental region R gives

O fR f RE [ y(X) - h(X) ]2 dX (A.3)

3 where li/tR = fR d X. Normalization of Eq. (A.3) with respect to the number of design points

N and the error variance a2, yields the integrated mean-squared error (IMSE)

J= NOBS E [ (X) - h(X) 12 dX. (A.4)

The integrated mean-squared error can be decomposed into two components
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Figure A. 1 Model fitting when the variance error is dom-inant.
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Figure A.2 Model fitting when the bias error is dominant.
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(J = V + B ), Lhe average variance

V=N°BSQf R
VR Var(9(X) ) dX, (A.5)

a 2  R

and the average squared bias

BR f E (X) - h(X) 12 dX. (A.6)
(Y

2

An important point is that whereas V depends only on the location of the design points

X1 ...... X,N, B depends on both the design points and the actual response function h (X).

To fit an accurate model, the experimental design D = {X, .... X, } should be chosen

such that J is minimized. Welch [50] shows that if the systematic departwre of the model

from the actual response surface, I h (X) - E9 (X) t is bounded by A for all the X in tht region

R, then the integrated mean-squared error is

A NA2 B
J <J'(D,-) = V(D) + B2 '(D), (A.7)

where B' depends only on the experimental design D, and not on the actual resnonse function

h (X). This fact provides a guideline for selecting an optimal design that minimizes J'. Note

that J' depends on the relative magnitude of the systematic departure and the variance of the

A
random error,

An "excursion" algorithm to select the design D that minimizes J' is presentzdt in [511.

The design of experiment is formulated as a combinatorial optimization problem with cost

function J'. These design strategies [50] and [51] are implemented in the Drogram ACED

(Algorithms for the Construction of Experimental Designs) program [281.
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A.3. Example of Design Point Selection with ACED

Suppose for simplicity that there are only two input parameters xI and x2. We represent

the ranges of x1 and x 2 by the levels (-1,0,1}, and the region R by 32 = 9 grid points, as

shown in Figure A.3.

The assumed model is

Y = o + PIXI + 12X2 + e  (A.8)

where Po , 3I, and P32 are the unknown constants, and e is a random error. The average

mean-squared error (am) criterion in ACED is used for the design of experiments. Table A.1

lists the experimental designs that minimize the average mean-squared error for five variance-

bias ratios (A = 0, 0.31, 0.55, 1.25, and -c), along with their properties. Each design D * (-)

is denoted in Column 2 by the number of runs at a grid point. For example, the design D * (0)

takes three runs at (x I, x 2) = (-1,1), and two runs at each of the other three corr rs of R.

A.3.1. All-variance design

In this case A = 0, the variance error V is dominant. ACED designs an experiment

D ( = 0 ) that minimizes V and distributes the points as equally as possible to the comer
a

of the design region.

A.3.2. All-bias design

If there is no random error in the experiment, - = o. ACED designs an experiment
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Table A. 1 1' -optimal designs and properties (NOBS = 9)

A D (A) V B e (D,O) e (D,-o) e j(D)
(Y a

0 3 0 2 2.39 0.922 100 72.3 72.3
00 0
2 02

0.31 2 1 2 2.44 0.858 98.0 77.7 77.7
0 00
20 2

0.55 2 1 1 2.64 0.750 90.5 88.9 88.9
1 01
11 1

1.25 1 1 1 3.00 0.667 79.7 100.0 79.7
11 1
1 11

00 1 1 3.00 0.667 79.7 100.0 79.7
11

1
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D" ( = - ) that minimizes the bias compoent of the integrated mean-squared error and dis-
a

tributes the points evenly across the design region.

A.3.3. Selection of a robust design

When the relative importance of the variance and bias errors is unknown, ACED

searches for a "robust" design good over a wide range of -. We define the percent

efficiency of a design D relative to an optimized design D * for - asCY

e,( D = J' (D') , 100%. (A.9)
a JX(D)

For instance, e (D, 0) measures the efficiency of D relative to an optimal all-variance design,

D '(A = 0 ), and e (D, 0) measures the efficiency of D relative to an optimal all-bias design13

D" (-A .=00).

a

A robust design D should have a large efficiency over a large range of variance and bias

error ratios. This is measured by

emin( D ) rin e ( D, -A), 0 <!513 < *.(A. 10)

a aT

Furthermore, it can be shown that emin is the efficiency with respect to the all-variance or all-

bias designs, e(D,0) or e(D,-) [50]. Therefore, a robust design D should maximize

emin(D) = min [e(D,0), e(D,o) ]. (A.11)

The minimum efficiency of the J"-optimal design at various values of A is shown in Column
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5. The ACED program chooses the D * (0.55) as the most robust design because its minimum

efficiency of 88.9% is larger than the minimum efficiency of the other designs.

A.4. Design and Analysis of Computer Experiments

The classical experimental designs, associated with Box and co-workers [24,26], are

invented for physical experiments that have random errors. However, in circuit simulation,

the computer code always produces the same outputs for the same inputs.

As a result, there are two ways to design and analyze a computer-simulation experiment:

(1) In addition to the experimental factors X, vary the other inputs to the computer code

according to their distribution. In the presence of random errors, classical designs can be

used for the experiment.

(2) With the exception of the experimental factors X, fix all the inputs to the computer code

at their nominal values. In the absence of random errors, an all-bias design from ACED

can be used for the experiment.

The design and analysis of deterministic computer-simulation experiments are discussed

in [35]:

The absence of random error allows the complexity of the actual response surface to

emerge.

0 The adequacy of the fitted response surface model is determined solely by the systematic

departure of the model from the actual response.
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0 The adequacy of the fitted response surface model is determined solely by the sys-

tematic departure of the model from the actual response.

* There is no obvious statistical basis for estimating the uncertainty.

0 Conventional notations of experimental unit, blocking, replication, and randomization

are irrelevant.

As a consequence, it is unclear if the current methods [24] for the design and analysib of

physical experiments are ideal for computer simulations. However, Sacks, Welch, Mitchell,

and Wynn [35] assert that

S The selection of inputs at which to run a computer code is still an experimental design

problem.

Statistical principles and attitudes to data analysis are helpful however the data are

generated.

* There is uncertainty associated with predictions from the fitted models, and the

quantification of uncertainty is a statistical analysis problem.

A.5. Latin Hypercube Design

McKay, Beckman, and Conover [251 were among the first to explicitly consider the sta-

tistical analysis of deterministic computer codes. They introduced Latin hypercube sampling,

and advocated it as an alternative to simple random sampling in Monte Carlo studies (see Sec-

tion 2.1). The objective of Latin hypercube sampling is to determine, for a known input dis-

tribution, the distributions of the outputs.
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STEP 1: Sample the range of each input variable Xk, k = 1 ...,p, into N (evenly-spaced)

points, and denote the samples by xk., j = 1,...,N.

STEP 2: The samples xkj, j = 1,...,N, will form the Xk component, k = 1,...,p, in XL,

i = 1,...,N. The components of the various Xk 's are matched at random to spread

the samples evenly in the input space.

Steck, Iman, and Dahlgren [52] and Atwood [531 advocated using the Latin hypercube

sampling method for the design of computer experiments. The study in [52] shows Latin

hypercube designs (samples) are superior to classical fractional factorials designs [26] for

fitting response surfaces in several computer experiments.

Compared to designs from the average mean-squared error criterion in ACED, the Latin

hypercube designs are much cheaper and they can easily handle problems of high dimensions.

For a small experiment, however, an all-bias design from ACED may outperform a Latin

hypercube design that has the same number of runs.

A FORTRAN program to generate Latin hypercube designs is given below:

program latin

c n = number of independent factors
c nobs = number of runs in the experiment
c lhs(nobs,m) = matrix of latin hypercube design

parameter (m=5, nobs=12)

integer iseed
integer lhs(nobs, m), iper(nobs)
real x(nobs), delta

integer i,j
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external rper, rnset

c...Discretize [-1,1] interval into nobs intervals of length delta

delta = 2.0 / (nobs-1)

do 10 i= 0, nobs-1, I
10 x(i+l) = -1.0 + i * delta

c.. .Setup with IMSL, initialize random number generator

iseed = 1234567
call rnset(iseed)

c...Random permutation for column i=l ,...,m

do 20 j=l,m,1
call rnper(nobs, iper)
do 30 i=l,nobs,l

lhs(ij) = iper(i)
30 continue
20 continue

c.. .Print out Latin Hypercube design

write (6,800) m, nobs
do 50 i=1,nobs,l
write (6,900) i, (x(lhs(ij)), j=l,m,1)

50 continue
stop

800 format(' Latin hypercube design of', i5,' factors with', i5,
1 ' observations'//)

900 format(i2,2x, 100F 10.4)
end
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APPENDIX B.

MODEL ASSESSMENT

B.1. A Statistical F-test Procedure for Model Assessment

For a given regression model, denote the least square prediction of the i'th data point,

y (xi), by Y (xi ) for i = 1 ,...,N. The procedure in [30] considers a fitted model to be adequate

if the following conditions are satisfied:

(a) The variation in y (xi), i = 1 ,...,N, "explained" by 9(x) is substantially larger than the er-

ror in the regression.

(b) The lack of fit (LOF) of data to the model is insignificant.

The sum of squares variations explained by the model is

N
SSModeI = [(Xi) - Yavg i2, (B.1)

i=1

where Yavg is the average of y (xi ), i = 1,...,N.

The error sum of squares is

N
SSErro,. = y, [ (x) _ y (xi )]2. (B.2)

i=1

The normalized regression sum of squares is

SS~ojet

MSModeI = (B.3)
M

and the normalized sum of squares of the errors is
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MSError SSModet (B.4)
N -M - 1

A statistical F-test is introduced in [301 to test condition (a). The goal is to determine

whether the expected variation due to the model E[ MSModej I is at least 70 2 times larger than

the expected error, E[ MSErro, I (typically yo 2 = 2 to 4).

The F-statistic of the regression

F, = MSModel (B.5)MSErro,

is compared with the corresponding critical F-value, F lcr" The critical F l.cr is the 1 - t

percentile point of a noncentral F-distribution with M and N - M - 1 degrees of freedom, and

the noncentrality parameter yo2. If F1 is larger than F l,cr, condition (a) is considered

satisfied.

To assess the lack of fit in the model, we partition the sum of squares error into "pure

error" (PE) and "lack of fit" (LOF) components. The "pure error" is due to random variations

only. If there are k replicated runs at x, Y() ..... Y(k), the "pure error" sum of squares is

k

X[ Y(i)(X) - y-2 (B.6)

where 5T is the average response at x. The total pure error sum of squares, SSPE, is the sum

of the individual "pure error" terms over all x. We denote the degrees of freedom due to

pure error by K.

The sum of squares due to the lack of fit is

SSWOF = SSErro - SSPE. (B.7)
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It has N - M - K - I degrees of freedom. The normalized sum of squares due to pure error

and lack of fit is denoted by MSPE and MSWoF, respectively.

The F-statistic

F2 = MSpE (B.8)

estimates the importance of the lack of fit. We compare F2 with F2,c,. The critical value

F., is the 1 - cx percentile point of a central F-distribution with K and N - M - K - 1

degrees of freedom. If F 2 is less than F2,cr, condition (b) is considered satisfied. The rela-

tions between the sum of squares and F-statistics are summarized in an analysis of variance

(ANOVA) table (Table B.1).

The F-tests have three possible outcomes:

Case 1. If F, > F lc,,, condition (a) is satisfied. The fitted model 9(X) is considered ade-

quate.

Case 2. If F1 < Fl., and F 2 < F2cr, condition (a) is violated but the lack of fit is

insignificant. Hence the fitted model is declared inadequate. The model inadequacy

may be caused by either the small sample size or the effects of parameters that are

not included in the model.

Case 3. If F, < Fl., and F 2 > F2,cr, condition (a) is violated and the lack of fit is

significant. The fitted model is considered inadequate, and a more complex model

may be needed to represent the response surface.
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B.2. Assessing the Goodness of Fit

For a given regression model, denote the least square prediction of the i'th data point,

y (xi), by 9 (xi) for i = 1,...,N. Then the squared error of prediction is [9 (x) - y (xi)]2. The

R 2 -statistic relates the total of these squared errors to the variability in the data:

N
., U(X) -- Y(X,)]

2

R2 = , - i=1RN(B.9)
1 Y (xi) -5T1 2

~i=1

where y" is the mean of y(x 1) .1), . y (x). It can be shown that 0 <: R 2 < 1, with larger

values suggesting better agreement between the predictions and the model.

One problem with R 2 is that it tends to overestimate the predictive power of a regression

model, because the same data are used to fit and to test the regression. A more stringent test

is based on predicting y (xi) by -i (x.), where Y-i (xi) is the least squares prediction based on

all the data except the i'th case. This leads to

Ny, U[_-(X,) _- y(X)1 2

R 2 Rs =- N (B.10)
[y (X,) _ y] 2

Again, the R pRS value of 1 indicates perfect agreement between the predictor and the data,

but R2PRS can be much less than R 2 (even less than 0!), indicating possibly poor predictive

capability and lack of fit.
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